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Physics 513, Quantum Field Theory
Homework 5

Due Tuesday, 7th October 2003

Jacob Lewis Bourjaily

1. We are to verify the identity

[γµ, Sρσ] = (J ρσ)µ
νγν .

It will be helpful to first have a good representation of (J ρσ)µ
ν . This can be obtained by raising

one of the indices of (J ρσ)λν which is defined in Peskin and Schroeder’s equation 3.18.

(J ρσ)µ
ν = gµλ(J ρσ)λν = igµλ(δρ

λδσ
ν − δρ

νδσ
λ),

= i(gµρδσ
ν − gµσδρ

ν).

We will use this expression for (J ρσ)µ
ν in the last line of our derivation below. We will proceed

by direct computation.

[γµ, Sρσ] =
i

4
([γµ, γργσ]− [γµ, γσγρ]) ,

=
i

4
({γµ, γρ}γσ − γρ{γµ, γσ} − {γµ, γσ}γρ + γσ{γµ, γρ}) ,

=
i

2
(gµργσ − γρgµσ − gµσγρ + γσgµρ) ,

= i (gµργσ − gµσγρ) ,

= i (gµρδσ
ν γν − gµσδρ

νγν) ,

= i (gµρδσ
ν − gµσδρ

ν) γν ,

∴ [γµ, Sρσ] = (J ρσ)µ
νγν .

‘óπερ ’έδει δε�ιξαι

2. All of the required identities will be computed by directly.
a) γµγµ = 4

γµγµ = (γ0)2 + (γ1)2 + (γ2)2 + (γ3)2 = 4.

b) γµ6kγµ = −26k
γµ6kγµ = γµγνkνγµ,

= (2gµν − γνγµ)kνγµ,

= 2kµγµ − γνkνγµγµ,

∴ γµ6kγµ = −26k
c) γµ6p6qγµ = 4p · q

γµ6p6qγµ = γµγνpνqργ
ργµ,

= (2gµν − γνγµ)pνqρ(2gρµ − γµρ),

= (2pµ−6pγµ)(2qµ−6qγµ),
= 4p · q − 26p6q − 26p6q + 46p6q,

∴ γµ6p6qγµ = 4p · q.
d) γµ6k6p6qγµ = −26p6q6k

By repeated use of the identity γµγν = 2gµν − γνγµ,

γµ6k6p6qγµ = γµγνkνγρpργ
σqσγµ,

= 2γµ6k6pqσgσµ − 2γµ6kpρg
ρµ6q + 2γµkνgνµ6p6q − 46k6p6q,

= 26q6k6p− 26p6k6q − 26k6p6q,
= 46qk · p− 26q6p6k − 4p · k6q,

∴ γµ6k6p6qγµ = −26p6q6k.

‘óπερ ’έδει δε�ιξαι
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3. We are to prove the Gordon identity,

ū(p′)γµu(p) = ū(p′)
[
(p′ + p)µ

2m
+

iσµνqν

2m

]
u(p).

Explicitly writing out each term in the brackets and recalling the anticommutation relations of
γµ, the right hand side becomes,

ū(p′)
[
(p′ + p)µ

2m
+

iσµνqν

2m

]
u(p) = ū(p′)

[
1

2m
(p′µ + pµ − ½γµγν(p− p′)ν + ½γνγµ(p− p′)ν)

]
u(p),

= ū(p′)
[

1
2m

(p′µ + pµ − ½γµγν(p− p′)ν + gνµ(p− p′)ν − ½γµγν(p− p′)ν)
]

u(p),

= ū(p′)
[

1
2m

(2p′µ − γµγν(p− p′)ν)
]

u(p),

= ū(p′)
[

1
2m

(2p′µ − γµ6p− γµ6p′)
]

u(p).

Now, recall that the Dirac equation for u(p) is

6pu(p) = mu(p).

Converting this for ū(p′)6p′, one obtains

ū(p′)6p′ = mū(p′).

Applying both of these equations where we left of, we see that

ū(p′)
[
(p′ + p)µ

2m
+

iσµνqν

2m

]
u(p) = ū(p′)

p′µ

m
u(p).

Looking again at the Dirac equation, mū(p′) = ū(p′)6p′ = ū(p′)γµp′µ, it is clear that

ū(p′)γµu(p) = ū(p′)
[
(p′ + p)µ

2m
+

iσµνqν

2m

]
u(p).

‘óπερ ’έδει δε�ιξαι

4. a) To demonstrate that γ5 ≡ iγ0γ1γ2γ3 anticommutes each of the γµ, it will be helpful to
remember that whenever µ 6= ν, γµγν = −γνγµ by the anticommutation relations. There-
fore, any odd permutation in the order of some γ′s will change the sign of the expression.
It should therefore be quite clear that

γ5γ0 = iγ0γ1γ2γ3γ0 = −iγ1γ2γ3 = −iγ0γ0γ1γ2γ3 = −γ0γ5;

γ5γ1 = iγ0γ1γ2γ3γ1 = iγ0γ2γ3 = −iγ1γ0γ1γ2γ3 = −γ1γ5;

γ5γ2 = iγ0γ1γ2γ3γ2 = −iγ0γ1γ3 = −iγ2γ0γ1γ2γ3 = −γ2γ5;

γ5γ3 = iγ0γ1γ2γ3γ3 = iγ0γ1γ2 = −iγ3γ0γ1γ2γ3 = −γ3γ5;

∴ {γ5, γµ} = 0.

‘óπερ ’έδει δε�ιξαι

b) We will first show that γ5 is hermitian. Note that the derivation relies on the fact that
(γ0)† = γ0 and (γi)† = −γi. These facts are inherent in our chosen representation of the γ
matrices.

(γ5)† = −i(γ0γ1γ2γ3)†,

= −i(γ3)†(γ2)†(γ1)†(γ0)†,

= iγ3γ2γ1γ0,

= −iγ2γ1γ0γ3,

= −iγ1γ0γ2γ3,

= iγ0γ1γ2γ3,

= γ5.
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Let us now show that (γ5)2 = 1.

(γ5)2 = −iγ3γ2γ1γ0iγ
0γ1γ2γ3,

= γ3γ2γ1γ0γ
0γ1γ2γ3,

= γ3γ2γ1γ
1γ2γ3,

= γ3γ2γ
2γ3,

= γ3γ
3,

= 1.

c) Note that εκλµν is only nonzero when κ 6= λ 6= µ 6= ν which leaves exactly 4! = 24 nonzero
terms from the 24 possible permutations. Also note that γκγλγµγν , like εκλµν , is totally
antisymmetric–any odd permutation of indices changes the sign of the argument. Therefore,
they change sign exactly together, εκλµνγκγλγµγν does not change sign. That is to say that
each of the 24 nonzero terms of εκλµνγκγλγµγν is identical to ε0123γ

0γ1γ2γ3. So

εκλµνγκγλγµγν = 24ε0123γ
0γ1γ2γ3 = −24

i
γ5,

∴ γ5 = − i

24
εκλµνγκγλγµγν .

This implies that
γ5 = −iεκλµνγ[κγλγµγν],

∴ γ[κγλγµγν] = −iεκλµνγ5.

5. We will begin by simply directly computing the form of ξ± from the eigenvalue equation

(p̂ · ½~σ) ξ±(p̂) = ±½ξ±(p̂).

Let us begin to expand the left hand side of the eigenvalue equation,

(p̂ · ½~σ) =
1
2

(
0 sin θ cos φ

sin θ cos φ 0

)
+

1
2

(
0 −i sin θ sin φ

i sin θ sin φ 0

)
+

1
2

(
cos θ 0

0 − cos θ

)
,

∴ (p̂ · ½~σ) =
1
2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
.

Note that we can see here that because this matrix has determinant −1 and trace 0, the eigen-
values must be are ±1. Therefore, we may write the eigenvalue equation as the system of
equations,

1
2

(
cos θ sin θe−iφ

sin θeiφ − cos θ

) (
ξ1
±

ξ2
±

)
= ±1

2

(
ξ1
±

ξ2
±

)
.

These two equations are equivalent; I will use the first row of equations. This becomes

±ξ1
± = cos θξ1

± + sin θe−iφξ2
±.

Therefore,

ξ1
+ =

sin θe−iφξ2
+

1− cos θ
= e−iφ tan(θ/2)ξ2

+ and ξ1
− = − sin θe−iφξ2

−
1 + cos θ

= −e−iφ tan(θ/2)ξ2
−

So that

ξ+ =
(

e−iφ cot(θ/2)ξ2
+

ξ2
+

)
and ξ− =

( −e−iφ tan(θ/2)ξ2
−

ξ2
−

)
.

To find the normalization, we must apply the normalization conditions ξ†±ξ± = 1. By direct
calculation,

ξ†+ξ+ = 1 = (ξ2
+)2(cot2(θ/2) + 1),

=
(ξ2

+)2

sin2(θ/2)
,

∴ ξ2
+ = eiη+

sin(θ/2).
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Likewise for ξ−,

ξ†−ξ− = 1 = (ξ2
−)2(tan2(θ/2) + 1),

=
(ξ2
−)2

cos2(θ/2)
,

∴ ξ2
− = eiη− cos(θ/2).

Notice that if ξ+ satisfies ξ†ξ = 1 then so does ξ′ = eiηξ. So in solving the normalization
equations, we necessarily introduced an arbitrary phase η. Noting, this, spinors become

ξ+ = eiη+
(

e−iφ cos(θ/2)
sin(θ/2)

)
and ξ− = eiη−

( −e−iφ sin(θ/2)
cos(θ/2)

)
.

Lastly, we would like to set the phase η so that when the particle is moving in the +z−direction,
they reduce to the usual spin-up/spin-down forms. It should be quite obvious that η− = 0
satisfies this condition for ξ−. For ξ+, we will set the phase to η+ = φ so that we may lose the
e−iφ term when θ = 0. So we may write our final spinors as

ξ+ =
(

cos(θ/2)
eiφ sin(θ/2)

)
and ξ− =

( −e−iφ sin(θ/2)
cos(θ/2)

)
.

‘óπερ ’έδει δε�ιξαι




